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Parsimonious modelling of winter season rainfall

incorporating reanalysis climatological data

Andrew P. Garthwaite and N. I. Ramesh
ABSTRACT
Several Markov Modulated Poisson Process (MMPP) models are developed to describe winter season

rainfall with parsimonious parameter use. We propose a methodology for determining the best form

of seasonal model for fine-scale rainfall within a MMPP framework. Of those proposed here, a model

with a fixed transition rate is shown to be superior over the other MMPP models considered. The

model is expanded to include covariate data for sea-level air pressure, relative humidity, and

temperature using reanalysis data over 14 years from the coordinates covering the Bracknell rainfall

collection site in England. Results are compared using the likelihood ratio test and the second-order

properties of aggregated rainfall.
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INTRODUCTION
Beginning with a time series of precipitation arrivals where

a ‘tipping bucket’ rain-gauge has accumulated and then dis-

charged a small fixed volume of water, point process models

can be used to describe rainfall at a fine time-scale and

retain clustering properties relevant to this scale. The

strength of this approach is that the inter-event durations

between bucket tip times are observed from the time series

along with the order of event arrival, allowing modelling

of rainfall at scales as small as 5-minute intervals, in contrast

to research where rainfall data is aggregated into hourly or

daily volume and examined for first and second moment

properties (Stern & Coe ; Hughes & Guttorp ;

Kigobe et al. ).

Measuring these events as the accumulation of a very

small volume of precipitation, the point process model

posits that rainfall arrival is Poisson distributed, and better
modelling can be performed by allowing the mean of this

distribution to vary in different states of a dynamic system,

where the transition between states is governed by a

Markov chain. This yields a doubly stochastic Poisson pro-

cess (Cox ). A useful form of this model is the Markov

modulated Poisson process (MMPP), which assumes that

the variation in the mean is controlled by a finite-state

hidden Markov chain (Davison & Ramesh ; Ramesh

; Rydén ). An aptly titled comprehensive review of

the model can be found in Fischer & Meier-Hellstern

(). Unlike many Poisson cluster process models, the

MMPP has a likelihood function that can be expressed in

a tractable form, allowing for robust parameter estimation,

albeit from a computationally demanding optimization pro-

cess. Successful estimation and reproduction by simulation

was demonstrated by Ramesh (), following a related

contribution by Smith to the discussion of Stern & Coe

(). As well as enabling parameters to be estimated

through maximum likelihood optimisation, these results

allowed comparison of nested sub-models through likeli-

hood ratio tests.
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While aggregated hourly and daily rainfall have been

effectively modelled through MMPP (see, for example,

Ramesh ), the task of interest in this paper is the fine-

scale modelling of winter rainfall, with comparison drawn

by reference to aggregations between 5 and 60 minutes.

For a great many hydrological applications, aggregations

as coarse as hourly or daily measurements of precipitation

are sufficient, but for certain catchment studies, including

the modeling of urban drainage systems and storm water

sewerage systems, and small catchment hydrology (Onof

2002), finer-scale modeling of rainfall is required. For mod-

elling on coarser scales, Smith & Karr () used a

method similar to an MMPP to model inter-arrival times

of summer rainfall, and extended their work to make statisti-

cal inferences about the model parameters (Smith & Karr

). Onof et al. () considered a class of MMPP for

the fine-scale modelling of the structure of the rainfall inten-

sity distribution, using tipping-times of rainfall gauges.

Cowpertwait et al. () developed a Bartlett–Lewis pulse

model that could also capture the fine time-scale properties

of rainfall. More recently, Ramesh et al. () derived

second order properties of the aggregated rainfall from an

MMPP and demonstrated that the model was capable of

reproducing rainfall properties at sub-hourly resolutions.

Thayakaran & Ramesh () extended the model to analyse

tipping-times recorded at multiple sites in a catchment area

and Ramesh et al. () further extended the model to also

incorporate covariates.

The number of states to include in an optimal MMPP

model has been the subject of some study. The MMPP has

an unobserved underlying Markov process; the state of the

system at any time can never be directly measured, but is

instead inferred from the proximity of bucket-tips within the

data. Ramesh () used a model with two states; one state

corresponding to high rainfall intensity and the other to low

or no rainfall. Models with four states have also been fitted

(Ramesh et al. ), but using three states is more common

(Onof et al. ; Thayakaran & Ramesh ). Although a

BIC analysis can be used to determine the best model, the

three state models are chosen based on the improvement

recorded in reproducing the statistical properties studied.

The three-state model generally provides a strong foundation

to obtain good description of the rainfall pattern, provided

the effects of seasonality are avoided (Ramesh et al. ).
Onof & Wheater () extended the Bartlett–Lewis

method to include a random cell duration, and improved

the reproduction of the proportion of dry periods of different

duration. In earlier research (Onof & Wheater ), simu-

lation studies demonstrated an improvement in the

temporal characteristics where the optimization had

included some value for the cell arrival rate, with the resul-

tant arrival rates recognizably characteristic for each

individual month.

Variation in rainfall patterns across the year and seaso-

nal effects have been countered by modelling each

calendar month separately (Ramesh et al. ; Thayakaran

& Ramesh ), with each month modelled by a unique set

of parameters. However, more parsimonious modelling is

desirable if the rainfall model is to form part of a larger

climate model involving many separate meteorological pro-

cesses. In this paper, we formulate models with a reduced

total number of parameters for the winter season rainfall.

This is achieved by treating the four-month winter period

from the start of November to the end of February as a

single block of time, and taking advantage of similarities

between the patterns of rainfall events to model this

period with one fitting. Differing approaches to retain vari-

ation between these months are examined, and the results

analysed by likelihood ratio tests as well as graphical sum-

maries of simulation studies.

This investigation is by nature a comparison of var-

ious models and we describe four MMPP models, each

having three states. The first two models are based on

standard research: first, we take the MMPP model fitted

to each month individually and, second, we consider

the MMPP model fitted over the winter season as a

whole, with no effort made to model variation between

the winter months. We refer to the former as the maxi-

mal model, as it contains all the other models we

consider as special cases, and the latter as the Fixed Par-

ameter (FP) model. We go on to detail two original

alternatives that we call the Fixed Transition Rate (FTR)

model and the Fixed Arrival Rate (FAR) model. The pur-

pose of introducing a winter seasonality is to model the

season as a whole, and then to experiment with different

approaches to introduce some variation from November

through to February. This contrasts with other research,

where the practice has mostly been to model each
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calendar month separately. The imperative is to compare

the new models with both the maximal model and null

(FP) model.

The proposed models are used to analyse winter

season rainfall data from England. Additional models

that incorporate covariates to produce improved fits are

considered. The capacity for our models to simulate

extreme events is briefly explored before the conclusions

are summarised.
Figure 1 | Box plots of daily observations of temperature, sea-level air pressure, and

humidity for the Bracknell site over fourteen years across the four winter

months.
DATA AND STUDY AREA

The rainfall bucket tip-time data used in this investigation

came from a weather station in Bracknell, England over a fif-

teen-year period that included fourteen complete winters,

made available by the Centre for Environmental Data

Analysis. Over this period, times were recorded when a

fixed volume of precipitation, 0.2 mm, had collected in the

recording device, forcing the bucket to tip and discharge

its cargo. The mean hourly rainfall across the four winter

months is 0.086 mm of precipitation per hour, with a stan-

dard deviation of 0.392. About two-thirds of the days over

the period are wet days with some rain during the winter

season and the other third of them are dry days with no

rain. The frequent occurrences of dry days in the data set

suggests that a viable model would include a state of negli-

gible or no rainfall. The distribution of the accumulated

rainfall, both at hourly and daily scales, looks positively

skewed. The maximum daily rainfall over the period is

recorded as 31.2 mm. When considering meteorological

covariates to include in our covariate models, we included

temperature, relative humidity, and sea-level air-pressure.

Values for the covariates are available from the data sup-

plied by the United States National Oceanic and

Atmospheric Administration. These data are reanalysis

data, obtained by using a consistent modern analysis

system wherein observational data from a historical period

is reprocessed. Figure 1 shows the daily variation of the

three covariates using box plots drawn separately for the

four months. There appears to be little variation in their

values across the winter months, except for slightly higher

values for temperature in November when compared with

other months.
METHODS

The general MMPP model

We assume the process that controls the arrival of points is a

stationary irreducible Markov chain, {X(t)}, with k states,

labelled 1, 2, . . . , k, and Q is its infinitesimal generator.

The rates of transition from one state to another are deter-

mined by the off-diagonal elements of the k × k matrix Q,
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whose diagonal element for each row equals the negative of

the sum of the remaining elements in that row. The mean

sojourn time for state i (the average amount of time spent

in that state) is �1=qii ¼ 1=
P

j≠i qij, for i ¼ 1, . . . , k.

Let πi denote the probability that the process is in state i

when it is in equilibrium and take the steady-state prob-

ability distribution π equal to (π1, π2, . . . , πk). We assume

that the underlying Markov chain {X(t)} is initially in equili-

brium and let the point process {N(t)} denote the number of

bucket-tips. The rate that bucket-tips occur is dependent on

the current state. Let ϕi be the mean rate of bucket-tips when

{X(t)} is in state i and assume that {N(t)} is a Poisson process

of rate ϕX(t). The arrival rate matrix, L, is the k × k diagonal

matrix whose (i, i) element is ϕi for i ¼ 1, . . . , k.

We focus on the case k ¼ 3, where:

L ¼
ϕ1 0 0
0 ϕ2 0
0 0 ϕ3

2
4

3
5 ¼ diag[ϕ1, ϕ2, ϕ3] (1)

and

Q ¼
�(q12 þ q13) q12 q13

q21 �(q21 þ q23) q23
q31 q32 �(q31 þ q32)

2
4

3
5, (2)

where qij is the transition rate from state i to state j.

Suppose that the process is observed in the interval

[0, T ], wherein bucket tips occur at times t1 < t2 < � � �< tn,

soN(T) ¼ n. To obtain an expression for the likelihood func-

tion of the point process {N(t)}, following from Smith (),

we define the following conditional probabilities:

ψ ij(t) ¼ P{X(t) ¼ j, N(t) ¼ 0jX(0) ¼ i, N(0) ¼ 0},

i, j ¼ 1, . . . , k:

Here ψ ij(t) is the probability that the underlying

Markov chain has transitioned to state j at time t, given

that it began in state i at time 0, and that in the time

period between 0 and t there were no bucket tips. The

Chapman–Kolmogorov forward differential equations for

the process are (Ross ):

ψ ij(tþ δt) ¼ ψ ij(t)(1þ q jjδt)(1� λjδt) þ
X
k≠j

ψ ik(t)qkjδtþ o(δt):
These lead to:

Ψ(t) ¼ exp {(Q� L)t} ¼
X∞
n¼0

tn(Q� L)n

n!
, (3)

where Ψ(t) is the matrix function with entries ψ ij(t). See, for

example, Ramesh et al. () for a derivation of Equation

(3).

Given t1, . . . , tn, the likelihood function is obtained

from:
• the steady-state probability, πl (l ¼ 1, . . . , k), that the pro-

cess is in state l at time t ¼ 0. For a three state model

(where l ¼ 1, 2, 3), the three elements of the steady

state probability vector, π, are here described as:

π1 ¼ (1�π2�π3)

π2 ¼ (q12þq13)(q32�q12)þq12(q31þq12þq13)
(q21þq12þq13)(q32�q12)þ (q31þq12þq13)(q21þq23þq12)

π3 ¼ (q21þq23þq12)(π2)�q12
(q32�q12)

; (4)

• the probability of not observing any bucket tips of rainfall

before the first bucket tip [Ψ(t1)];

• the (conditionally independent) probabilities of not

observing any bucket tips of rainfall between those

observed [Ψ(ti � ti�1) for the interval from ti�1 to ti, for

i ¼ 2, . . . , n];

• the probability of observing bucket tips of rainfall at the

times they occurred, using the rates ϕj that form the

matrix L;

• the probability of not observing any bucket tips of rainfall

between the last observation and the end of the recording

period [Ψ(T � tn)].

As given in Smith (), Ramesh (, ) and

Ramesh et al. (), the likelihood is:

f(t1, . . . , tnjQ, L) ¼ π
Yn
i¼1

{Ψ(ti � ti�1)L}

" #
Ψ(T � tn) l , (5)

where multiplication by the vector l sums the products over

all possible states l.
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Equations (3) and (5) form the likelihood function of the

MMPP model. The parameters to estimate are the com-

ponents of L and Q. A model with k states will have k2

parameters. While Equations (3) and (5) express the likeli-

hood in closed form, determining its value for a set of

parameters is a sequential computation where the likelihood

is updated at each event in the time series. Finding a maxi-

mum likelihood estimate is possible numerically, although

time-consuming, and its duration increases with the

number of parameters.

The FP and maximal models

The maximal model effectively fits a separate MMPP for

each of the four winter months. With six transition rate par-

ameters and three arrival rate parameters for each of the

four months, this is the largest of our models with thirty-

six parameters in total.

Rather than fit an MMPP model to each month individu-

ally, the FP model fits the MMPP model once for the whole

winter data, with no difference between months. Thus, its

arrival rate matrix and transition rate matrix are given by

Equations (1) and (2), and its likelihood is given in

Equations (3) and (4). The only distinction is in the choice

of data it is applied to, being whole seasons concatenated

into a single time series. For this model, there are nine

total parameters for the whole four-month period, with six

transition rate parameters and three arrival rate parameters,

that do not change from month to month. Although we refer

to the parameters as ‘fixed’, they are not fixed in the sense

that the parameter values are fixed for the optimisation,

simply that one set of parameter estimates is used for the

whole season without variation between months.

The FTR model

In the FTR model the parameter values for the arrival rate

matrix are allowed to vary as normal across months, but

the transition rate matrix is held in common for all the

months. This method of abridging the model for the winter

season takes the structure of the FP model for the transition

matrix Q and assumes that ϕ1, the arrival rate parameter in

state 1 (low to minimal rainfall), is the same in all four

months. Thus, its only differences from the FP model is
that the arrival rates in states 2 and 3 (ϕ2 and ϕ3) vary with

month. Again, although in this method we refer to the tran-

sition rate matrix as ‘fixed’, it is not fixed in the sense that

the parameter values are fixed for the optimisation.

To aid parameter interpretation, arrival rates are speci-

fied as the rates in November with additional adjustment

parameters in subsequent months, like corner-point parame-

terization in general linear models. The following defines

the notation, where Lj is the arrival rate matrix for month

j, where j ¼ 1 corresponds to the month November, and j

increases correspondingly from the months of December

to February:

L1 ¼ diag(ϕ1, ϕ2, ϕ3) for j ¼ 1,

Lj ¼ diag(ϕ1, ϕ2 þ β2j, ϕ3 þ β3j) for j ¼ 2, 3, 4: (6)

The parameters ϕ1, ϕ2 and ϕ3 may be viewed as the ‘base-

line’ arrival rate parameters, while the six βij parameters are

the monthly arrival rate adjustment parameters. The tran-

sition matrix Q does not vary from month to month.

In the FTR model, optimisation occurs over a single set

of six transition rate parameters for the whole season, along

with three baseline arrival rate parameters, and a further six

arrival rate adjustment parameters (for states 2 and 3 across

December, January and February) making a total of 15

parameters.

The changes in ϕi affect Ψ (Equation (3)), this becoming

a function of the time interval and the month the points

occur within, so at time t:

Ψ(t) ¼ exp {(Q� Ljt )t} ¼
X∞
n¼0

tn(Q� Ljt )
n

n!
, (7)

for jt ¼ 1, 2, 3, 4. This represents the use of the arrival rates

related to the month at the time of the event. In addition,

when we post-multiply Ψ(t, jti ) by the arrival matrix, again

we must use the L matrix corresponding to the relevant

month for the recorded events:

f(t1, . . . , tnjQ, L) ¼ π
Yn
i¼1

{Ψ(ti � ti�1)Ljti
}

" #
Ψ(T � tn) l , (8)

for jt ¼ 1, 2, 3, 4.
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The FAR model

The FAR approach to abridging the model across the winter

months took the reverse approach to the FTR model. It

assumes a single arrival rate matrix for the whole season,

while the transition rate matrix is allowed to vary gradually

between months. In this model, there are separate transition

rate adjustment parameters αi,k,j for the months December,

January and February, acting on each of the six off-diagonal

transition rate parameters. With 27 parameters in total, this

model is larger than the FTR model, but it is still noticeably

smaller than the maximal model that has 36 parameters.

Let Qj denote the transition rate matrix for month

j(j ¼ 1, . . . , 4). With November as a baseline, Q1 is equal

to Q in Equation (2), and the other transition rate matrices

can be written as:
Qj ¼
�q12 � α12j � q13 � α13j q12 þ α12j q13 þ α13j

q21 þ α21j �q21 � α21j � q23 � α23j q23 þ α23j
q31 þ α31j q32 þ α32j �q31 � α31j � q32 � α32j

2
4

3
5,
for j ¼ 2, 3, 4. The arrival rate matrix, L, has the same form

as in Equation (1). The role of the αijk parameters is to adjust

the rate of transition from state i to state j, when in month k,

adjusted from a baseline established during the first month

in the series, so as to model the gradual variation in tran-

sition rates from month to month.
Adapting for covariate model

Often meteorological covariate information only gives a

daily value for each covariate, and for this example data

availability dictates that this is the case here. To include cov-

ariates in the MMPP model, the approach we adopt is to

allow them to influence the rainfall arrival rates in the L

matrix. Ramesh et al. () described a model where time

varying covariates influenced the transition and arrival

matrix, and we make slight modifications to the expression

of conditional probabilities previously suggested, as the

rate matrix now varies with time. Again, we define the

matrix B(u) ¼ (Q� L(u)), where the arrival matrix L in B

(u) is set to vary with time, while the transition matrix Q
remains constant:

Ψ(t) ¼ exp
1
t

ðt
0
[(Q� L(u)]du

� �
¼ exp

1
t

ðt
0
B(u)du

� �

¼ exp �Bt ¼ e
�Bt (9)

The likelihood function is then written as,

f(t1, . . . , tn, jQ, L) ¼ π
Yn
i¼1

{ exp {�B(ti � ti�1)}L(ti)}

" #

�B(T � tn)l: (10)

with �B(ti � ti�1) ¼ 1=(ti � ti�1)
Ð ti
ti�1 [Q� L(u)]du, and t0 ¼ 0.

The arrival rate matrix is allowed to depend on

meteorological covariates, and we adjust the L matrix
(c.f. Equation (6)) accordingly, where β2j and β3j vary

with month, x is the 3 × 1 vector giving the daily values

of the covariates, and γ is a vector of regression coeffi-

cients that does not vary with month. The monthly

adjustments β21 and β31 applied to November are fixed par-

ameters, both equalling zero, as November arrival rates are

treated as baseline estimates for the FTR model. The

lowest state of arrival has no adjustment parameter as

the arrival rate in state one is treated as zero or of a negli-

gible rate. The function L(u), of the vector of daily

meteorological covariate data x and month j, produces

the daily arrival matrices, as follows:

L(ti) ¼
ϕ1 0 0
0 ϕ2 þ β2j þ γTxi 0

0 0 ϕ3 þ β3j þ γTxi

2
64

3
75, (11)

where the tip times ti fall in month j.

This model is very flexible as there are no restrictions on

the transition and arrival matrices, except that they must

meet the conditions to be the transition rate and arrival

rate matrices of an MMPP model.
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RESULTS AND DISCUSSION

The models were employed to analyse a data set that

gave the times of bucket-tips at a weather station in Brack-

nell, England over a fifteen-year period that included

fourteen complete winters. The readings from the latter

were accrued into a single vector of arrival times, together

with a labelling vector to denote the month (November–

February) wherein each rainfall event originated. For the

maximal model, the data for each winter month were

taken separately and an MMPP model fitted; summing

their objective function values gave the log-likelihood for

the maximal model.

All four models were fitted to the data and the parameter

values for themaximal, FP, FTR and FARmodels are given in

Table 1 along with the fitted sojourn times for each state. In

the table, q�ik is the (i, k) element of the transition rate

matrix for the month specified in the first column; the ϕ�i
are the diagonal elements of the arrival rate matrix for the

specified month. The sojourn times are defined similarly.

For the FP model, these quantities each have a single value

for all the winter months. The parameter estimates for the
Table 1 | Parameter estimates and sojourn times for the four models used

Month q�
12 q�

13 q�
21 q�

23 q�
31 q�

32

Maximal model

Nov 0.03 0.002 0.37 0.18 0.07 0.72

Dec 0.03 0.003 0.35 0.20 0.18 0.70

Jan 0.03 0.004 0.39 0.14 0.17 0.95

Feb 0.02 0.004 0.33 0.13 0.19 0.67

FP model

Win. 0.03 0.003 0.36 0.16 0.14 0.83

FTR model

Nov 0.03 0.003 0.36 0.16 0.15 0.82

Dec 0.03 0.003 0.36 0.16 0.15 0.82

Jan 0.03 0.003 0.36 0.16 0.15 0.82

Feb 0.03 0.003 0.36 0.16 0.15 0.82

FAR model

Nov 0.03 0.003 0.38 0.17 0.07 0.80

Dec 0.03 0.002 0.34 0.20 0.20 0.78

Jan 0.03 0.005 0.39 0.16 0.13 0.97

Feb 0.02 0.004 0.34 0.13 0.19 0.76
maximal model confirm a similarity between months in

terms of their Markov state transition rates.

The parameters of the transition rate matrix (the q�ik)

cannot vary with month under the FTR model, and

Table 1 shows that their values are similar to the FP

model, as might be expected. Similarly, the parameters of

the arrival rate matrix (the ϕ�i ) cannot vary with month

under the FAR model, and the parameter estimates of this

are similar to those of the FP model. The parameter values

that vary from month to month are the ϕ�i with the FTR

model, and the q�ik with the FAR model. The values they

take are quite close to the values given in corresponding

months by the maximal model, as can be seen by comparing

their values with the first four rows of Table 1.

Turning to hypothesis tests, parameters have been esti-

mated by maximum likelihood so a natural criterion for

model comparison is the likelihood ratio test. Table 2

gives values of likelihood ratio test statistics, parameter

difference, and p-values for the other models (FP, FTR,

and FAR) when compared with the maximal model. Each

of these models is a simplified form of the maximal model

and the first question of interest is whether there is evidence
ϕ�1 ϕ�2 ϕ�3 sj1* sj2* sj3*

0.03 2.47 14.02 33.33 1.80 1.27

0.03 2.44 13.37 32.42 1.83 1.14

0.03 2.98 16.88 29.87 1.91 0.89

0.02 2.14 13.06 35.78 2.16 1.16

0.03 2.62 15.02 33.20 1.89 1.03

0.03 2.66 15.94 33.13 1.89 1.03

0.03 2.67 14.35 33.13 1.89 1.03

0.03 2.86 16.34 33.13 1.89 1.03

0.03 2.29 13.45 33.13 1.89 1.03

0.03 2.61 14.97 33.58 1.82 1.15

0.03 2.61 14.97 35.06 1.84 1.02

0.03 2.61 14.97 29.34 1.83 0.91

0.03 2.61 14.97 35.65 2.13 1.05



Table 2 | Likelihood ratio tests comparing alternative models with the maximal model (left) and FP model (right)

vs. Maximal model No. of para. Para. diff. D test stat. p-value vs. FP model No. of para. Para. diff. D test stat. p-value

Maximal 36 – – – – – – – –

FP 9 27 32.565 0.2118 FP 9 – – –

FTR 15 21 4.551 0.9999 FTR 15 6 28.014 <0.0001

FAR 27 9 14.343 0.1106 FAR 27 18 18.222 0.4411
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of model inadequacy for any of them. To this end, likelihood

ratio tests were performed to test whether the additional par-

ameters in the maximal model improved the fit relative to a

simpler model nested within it. The sample size for the tests

is 17,392 as this was the number of bucket-tips over the four-

teen winters, so asymptotic theory should hold well.

Results of the tests are displayed in Table 2. The null

hypothesis is that the additional parameters in the maximal

model do not make it a better model than the simpler model.

The test statistic, D, is twice the difference between the

maximum log-likelihood of the maximal model and the

maximum log-likelihood for the alternative model being

tested. If the null hypothesis holds, then asymptotically D

follows a chi-square distribution on ν degrees of freedom,

where ν is the difference in model size. It can be seen that

when the maximal model is compared with each of the

new models, in every case the null hypothesis fails to be

rejected. Hence there seems little justification for having

the additional parameters.

The FP model does not distinguish between calendar

months, and estimates a simple set of nine parameters that

are not adjusted from month to month. The FTR and FAR

models can each be obtained from this model by adding par-

ameters to it, so the FP model is nested within each of the

new models. Likelihood ratio tests were conducted to exam-

ine whether the additional parameters in the FTR and FAR

models gave any improvement, and these results are also

given in Table 2. The null hypothesis is that the additional

parameters do not improve the model. This hypothesis

was not rejected when the FAR model was compared with

the FP model (p ¼ 0:44), so there is no demonstrable

improvement in the FAR model through adjusting transition

rates. Hence there seems little justification in having

monthly-varying transition rate parameters. However,

there is a strongly significant result when the FTR model is

compared with the FP model (p< 0:0001), so there is
clear evidence that adjusting arrival rates is an improvement

to the model. It is also worth noting that the performance of

the FTR model was certainly better than that of the FAR

model, as it has fewer parameters but still has the higher

log-likelihood ratio test statistic. Hence, all the indications

are that the best of the models is the FTR model.

To examine the goodness of fit of a model, simulations

were run with the model’s parameter estimates treated as

population parameters making use of an algorithm called

event-by-event simulation as described by Ramesh ().

An event is defined as either an arrival from the point pro-

cess N(t) or a state transition of the underlying Markov

chain X(t). The initial state of X(t) is simulated from its

stationary distribution. Given that the Markov chain is in

state i, the next event is taken as an arrival from N(t) with

probability ϕi=(ϕi þ qi) or a transition of X(t) to state j with

probability qij=(ϕi þ qi). The time to the next event is then

obtained from an exponential distribution with parameter

(ϕi þ qi). This process is continued until the final point in

the interval is simulated. If the population parameters are

well-estimated and the model is appropriate, then the time

series of rainfall measurements that this yields should

resemble the original observed data. We compare the

empirical and simulated values of various statistics for rain-

fall aggregated at different time-scales. As we are particularly

interested in fine time-scales, we aggregate in 5, 10, 20, 30

and 60-minute intervals. For each model, we repeated the

simulation 100 times and formed simulation bands using

the minimum and maximum values in the 100 simulations.

The following statistics of the rainfall intensity are

examined:

(i) the mean volume of rainfall in an interval;

(ii) the mean duration of ‘dry’ periods (a ‘dry’ period is

defined as at least two consecutive intervals without

rain);
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(iii) the mean duration of ‘wet’ periods (a ‘wet’ period is

defined as a period of at least two consecutive intervals

with rain recorded);

(iv) the coefficient of variation of the rainfall in an interval;

(v) the standard deviation of the volume of rainfall in an

interval;

(vi) the proportion of dry intervals in the time series,

wherein no bucket-tips are observed;

(vii) auto-correlation with a range of lags from 1 to 5.

The same process of aggregation and calculation of

summary statistics was conducted with the empirical

observed data set. Here we restrict attention to the maxi-

mal model and the FTR model (these are the two best

competing models). For each aggregation level and each

summary statistic a graphical display was created to chart

the summary statistic across the four winter months.

These are given in Figures 2 and 3. The solid black line

towards the centre of each graph is the value of the sum-

mary statistic for the observed data. Superimposed on the

graphs are two sets of simulation bands: the dotted (blue)

lines are the maximum and minimum values from the

100 simulated data sets for the FTR model, while the

dashed (red) lines are the equivalent boundary lines for

the maximal model.

Plots in the left-hand column of Figure 2 give the

mean rainfall accumulation in 5, 10, 20, 30 and 60-

minute intervals and those in the right-hand column

give the mean duration of dry and wet periods for a selec-

tion of time intervals. The boundary lines for the FTR

model are always close to those for the maximal model,

but tend to be a little flatter. This is also true of the bound-

ary lines in Figure 3, that give plots for the other summary

statistics listed above. Sampling distributions of standard

deviation appears to be skewed for both models at finer

aggregations. In general, values for the observed data

are comfortably within the boundary lines, with the excep-

tion of autocorrelation – we present here autocorrelation

at lag 5, where the observed value is outside the boundary

lines on only one occasion (autocorrelation of the 20-

minute accumulation at lag 5 in January for the maximal

model) but is always within the boundary lines for the

FTR model. The simulations failed to deliver a good con-

fidence band for autocorrelation with lags ranging from
one to four – typically the autocorrelation was underesti-

mated at such aggregations as 5 and 10 minutes, but

improved for larger aggregations, and then was well esti-

mated at a 60-minute aggregation for most months.

Hence, the plots indicate that the FTR model gives an ade-

quate fit to the data, but that some of the second order

properties of the model are less well served with finer-

scale aggregations.

MMPP models with covariates

To illustrate application of this covariate model with

meteorological covariates we return to the data on

bucket-tips at the weather station in Bracknell. The covari-

ates we consider are temperature, relative humidity, and

air-pressure, as earlier work by Ramesh et al. () indi-

cated that these had a significant effect on precipitation

arrival within the MMPP framework. As stated earlier,

these data are reanalysis data, obtained by using a consist-

ent modern analysis system wherein observational data

from a historical period is reprocessed. We focus on

adding covariates to the FTR model, as results in the earlier

section found the FTR model performed better than the

alternative models we considered. The model assumes

that the transition rate matrix (Q) does not vary with

month during the season. In an attempt to obtain a parsi-

monious model, we assume that it also does not vary

with the covariates.

The model incorporating covariates was fitted to the

time series of bucket tips using maximum likelihood esti-

mation. When compared with the FTR model without

covariates with three fewer parameters this gives a test stat-

istic for the likelihood ratio of 83.2, and hence there is

overwhelming evidence that the covariates improve the

model.

The covariates are clearly good predictors of rainfall,

and it seems plausible that a simpler model than the FTR

model could be used when the covariate information is

available. Covariates were added to the FP model and

fitted to the tip times data. This model has six fewer par-

ameters than the FTR model with covariates, with a test

statistic for the likelihood ratio of 6.60. This is only slightly

poorer than the FTR model with covariates, but there is sig-

nificant evidence (p ¼ 0:04) that the FTR model with



Figure 2 | Empirical mean rainfall, mean duration of wet and dry periods, with simulation bands from the FTR and maximal models.
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Figure 3 | Observed coefficient of variation, standard deviation, proportion of dry periods and autocorrelation at lag 5 of the aggregated rainfall with simulation bands from the FTR and

maximal models.
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covariates is the better model. Simulations were run to

examine the goodness of fit of the models using the same

procedure as before. Plots similar to Figures 2 and 3 are

given for the FTR model with covariates and the FP

model with covariates in Figures 4 and 5. These two

models always show very similar bounds that almost

always contain the observed data value, so the fits are ade-

quate. We find that while the FTR model is superior to

simpler models in cases without readily available daily

meteorological covariates, where this data is available the

simple covariate FP model will be quite capable of simulat-

ing rainfall series alike to the observed data. One

explanation of the efficacy of this simple model, that does

not see changes in the arrival rate modulated by calendar

month, comes from the input of the meteorological data

that varies daily. Given knowledge of the sea-level air-

pressure, relative humidity and temperature, knowledge

of calendar month becomes less necessary to describing

appropriate rates of arrival.
Extreme events

We examined the extreme 30 minute, 60 minute, and daily

rainfall volumes from simulations drawn from the FTR

model, shown in Figure 6 plotted along with the empirical

daily extreme rainfall against their Gumbel reduced vari-

ate (Gumbel ). This comparison showed that the

model was capable of reproducing daily extremes, as the

empirical evidence lay within the simulation boundaries

provided by the boxplots for all fourteen years. At 60

minute intervals we found that the simulations are only

successful for the lower stretch of the Gumbel reduced

variate in producing simulations bands that include the

empirical evidence. Clearly this is not as effective as

with the daily extremes, and in plotting the 30 minute

extremes the simulation is again less well reproduced

with smaller time interval aggregations. When this was

performed with the covariate FTR model, this same pat-

tern was represented. As reported in previous studies,

Verhoest et al. () for example, the estimation of

extreme values at fine time-scale is a common problem

for most stochastic models for rainfall and our results

reveal the same.
CONCLUSIONS

By identifying months with similar transition rates, we have

been able to reduce the number of parameters used for fit-

ting whole winter seasons and produce simulations and

results comparable to that of the maximal model. This

approach offers a benefit to larger environmental or hydro-

logical models, where selecting methods of describing

rainfall must be done with consideration to the overall size

of a complex system incorporating a plethora of distinct

parts.

For our purposes we have concentrated on the months

November through to February, however there exists poten-

tial to further reduce any year-long model by collecting

months with similar transition rates. While not employed

here, a general guide for collecting together of months

with common transition rate parameters would see as

viable candidates any months where the standard deviation

of the parameter estimates indicates a parameter region

common to all, with transition rate estimates separated by

no more than two standard deviations, when the months

being examined run together consecutively.

From the reanalysis data set we employed covariate

values that changed on a daily basis. The covariate infor-

mation was incorporated into our overall model by the

simple expedient of partitioning the time-series into days

and computing the contribution to the likelihood from

each day separately. This a flexible approach that can be

applied in a number of different ways.

In the covariate case, we have shown statistically signifi-

cant evidence for extending the covariate model from FP to

FTR, but the strength of the evidence for additional par-

ameters was of a lower level of significance than in the

model without covariates. To account for this difference

we consider sources of input into the arrival rates for each

model. Conceptually, the difference between FTR and FP

is in allowing the arrival rate matrix, in the FTR model, to

contain variation between months. Given that the meteoro-

logical covariate data that accompanies both the FP and

FTR covariate models contain information that acts as a pre-

dictor for rainfall arrival, and the meteorological data varies

naturally across season, the covariate data itself contains

much of the variation needed to effectively model rainfall

arrival in each month distinctly. Equipped with knowledge



Figure 4 | Empirical mean rainfall and the mean duration of wet and dry periods, along with simulation bands from the FTR and FP covariate models.
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Figure 5 | Coefficient of variation, standard deviation, proportion of dry periods and autocorrelation at lag 5 of the observed rainfall with simulation bands from the FTR and FP covariate

models.
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Figure 6 | Ordered annual extreme rainfall at different aggregations with boxplots using annual maxima of 100 simulations from the FTR model.
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of relative humidity, sea-level air-pressure, and potential

temperature, while the model does still gain some benefit

from knowledge of calendar month, this benefit will be

less pronounced than in the model without covariates.
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